

AI IN EDUCATION TODAY

**Dr. V. N. Rajavarman
Dr. V. Saishanmuga Raja
Mr. Suresh R.
Dr. Senthilvelan. G**

AI IN EDUCATION TODAY

Dr. V. N. Rajavarman

Dr. V. Saishanmuga Raja

Mr. Suresh R.

Dr. Senthilvelan. G

Copyright Statement:

All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission of the publisher, except in the case of brief quotations embodied in critical reviews and certain other noncommercial uses permitted by copyright law.

For permission requests, write to the publisher at the address below:

Magestic Technology Solutions (P) Ltd.
Chennai, Tamil Nadu, India
E-mail: info@magesticts.com
Website: www.magesticts.com

Copyright Registration:

This book and its content are intended to get registered with the Copyright Office of India. Unauthorized use, reproduction, or distribution of this publication, or any portion of it, may result in severe civil and criminal penalties, and will be prosecuted to the maximum extent possible under the law.

Acknowledgments:

Any trademarks, service marks, product names, or named features are assumed to be the property of their respective owners and are used only for reference. There is no implied endorsement if we use one of these terms.

Published by:

Magestic Technology Solutions (P) Ltd. [2025]

AI IN EDUCATION TODAY

Authors:

Dr. V. N. Rajavarman

Dr. V. Saishanmuga Raja

Mr. Suresh R.

Dr. Senthilvelan. G

Copyright 2025 © Magestic Technology Solutions (P) Ltd.
All rights reserved

ISBN: 978-93-92090-42-4

First Published: 18th August, 2025

DOI: [www.doi.org/10.47716/978-93-92090-42-4](https://doi.org/10.47716/978-93-92090-42-4)

Price: 400/-

No. of Pages: 304

Magestic Technology Solutions (P) Ltd.

Chennai, Tamil Nadu, India

E-mail: info@magestictcs.com

Website: www.magestictcs.com

Name of the Monograph:

AI IN EDUCATION TODAY

Authors:

Dr. V. N. Rajavarman

Dr. V. Saishanmuga Raja

Mr. Suresh R.

Dr. Senthilvelan. G

ISBN: 978-93-92090-42-4

Volume: I

Edition: First

Printed & Published by:

Magestic Technology Solutions (P) Ltd, Chennai, India.

info@magesticts.com | www.magesticts.com

Copyright @2025. All rights reserved.

No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission of the publisher, except in the case of brief quotations embodied in critical reviews and specific other non-commercial uses permitted by copyright law. For permission requests, write to the publisher, addressed "Attention: Permissions Coordinator," at the address below.

Magestic Technology Solutions (P) Ltd.

544, Anna Street, Kathirvedu, Chennai, Tamil Nadu, India

E-mail: info@magesticts.com

Website: www.magesticts.com

DEDICATION

Er. A. C. S. ARUNKUMAR

B.Tech (Hons),, LMISTE., MIET.,(UK),, LMCSI,,

PRESIDENT

Dr. M. G. R. Educational and Research Institute

Chennai, Tamil Nadu, India.

It is with profound pride and deep reverence that we dedicate this book to **Er. A C S. Arunkumar**, B.Tech (Hons),, LMISTE., MIET., (UK),, LMCSI, the distinguished President of Dr. M.G.R. Educational and Research Institute, situated in the culturally rich city of Chennai, Tamil Nadu, India.

Our President's unwavering commitment to academic excellence and the advancement of knowledge stands as a testament to his global vision. His educational philosophy continues to inspire, serving as a guiding light that has illuminated the path to academic and personal growth for countless students, leaving an indelible mark on the academic excellence.

Our gratitude for his visionary leadership is boundless, as his guidance consistently drives us to pursue excellence in every facet of our endeavours. It is not merely an honour but a privilege to dedicate this book to such a luminary—an enduring expression of our respect, admiration, and appreciation.

We extend our heartfelt thanks to you, sir, for your remarkable contributions to education and for tirelessly inspiring us all with your leadership. Just as this book will serve future generations, so too will your legacy continue to inspire them.

Authors:

Dr. V. N. Rajavarman

Dr. V. Saishanmuga Raja

Mr. Suresh R.

Dr. Senthilvelan. G

AUTHORS

Dr. V. N. Rajavarman, a distinguished professor at Dr. M.G.R. Educational and Research University, Chennai, earned his doctorate from the same institution. Since beginning as a Lecturer in 1992, he has accumulated 28 years in academia and four in industry, advancing to Professor in Computer Science. He has authored over 75 internationally indexed journal articles and published 5 books and one patent. As a doctoral guide, he has supervised 16 PhDs and is mentoring 8 more. Honored with numerous awards, he currently serves as Professor, Dean of Part-time Studies, and Additional Dean of Computer Studies at Dr. M.G.R. University.

Dr. V. Saishanmuga Raja, Professor at Dr. M.G.R. Educational & Research Institute University, Chennai, holds a PhD in Computer Science and Engineering from the same institution (2015). He earned his B.E. (2006) and M.E. (2008) in Computer Science and Engineering from Anna University, Chennai. With 17 years of teaching and 10 years of research experience, his expertise spans Data Mining, Neural Networks, Genetic Algorithms, and IoT. He has published around 10 journal papers in reputed platforms and is an active member of professional bodies including IEANG, CSI, and ACM. His career reflects a strong blend of academic excellence and research innovation.

Mr. Suresh R., Assistant Professor in the Department of Computer Applications at DRBCCC Hindu College, Chennai, has over 19 years of teaching experience. He holds an M.Sc., M.Phil., and B.Ed. in Computer Science and is pursuing a Ph.D. at Dr. M.G.R. Educational and Research Institute, Chennai. His academic and research interests include digital forensics, cybersecurity, cybercrime, networking, and software engineering. Proficient in C, C++, Java, and Python, he has earned several accolades, including the Man of Excellence Award, Best Assistant Professor Award, and four Best Faculty Awards, recognizing his dedication, teaching excellence, and contributions to research in computer science.

Dr. Senthilvelan G., Assistant Professor in Computer Science and Engineering at Dr. M.G.R. Educational and Research Institute, Chennai, has 15 years of academic experience. He earned his Master's in Computer Science and Engineering from the same institution and his Ph.D. from St. Peter's University, Chennai. His research work includes publications in Scopus-indexed journals and one published book. Actively contributing to academic development, he has organized numerous seminars, workshops, and conferences. His innovative approach is reflected in the acquisition of an Indian patent in Computer Science and Engineering, underscoring his commitment to advancing research, technology, and education in his field.

PREFACE

The field of education is experiencing a transformation unlike any in its history. The acceleration of Artificial Intelligence (AI) technologies over the past decade has not only changed how we live and work but has also begun to fundamentally reshape the ways in which we teach, learn, and create knowledge. The integration of AI into educational systems marks a pivotal point—one where technology and human potential converge to open new possibilities for personalized learning, global access, and innovative pedagogical approaches.

From its earliest presence in computer-assisted learning tools to today's advanced adaptive platforms and intelligent tutoring systems, AI's journey in education reflects the broader story of digital transformation. Where once technology was a supplementary aid, it is now becoming an active partner in the learning process—analyzing student needs, predicting performance trends, offering real-time feedback, and enabling educators to focus more on mentorship than on administrative burdens.

In today's classrooms—be they traditional lecture halls, hybrid environments, or fully virtual platforms—AI is changing the rhythm of learning. It supports teachers in crafting individualized lesson plans, identifies learning gaps before they widen, and empowers students to take ownership of their educational journey. In higher education, AI enhances admissions processes, provides intelligent research assistance, and streamlines academic advising. In corporate and lifelong learning contexts, it powers skill-gap analysis and creates customized upskilling pathways for employees.

However, with these opportunities come critical questions. How do we ensure fairness and equity in AI-driven decision-making? How do we protect the privacy of learners while leveraging their data for personalization? How do educators develop the AI literacy necessary to use these tools effectively? These are not merely technical concerns; they are ethical imperatives that must guide the responsible adoption of AI in education.

AI in Education Today is designed to provide a comprehensive and balanced exploration of these themes. This book begins with a foundation in AI concepts, moving through its evolution in educational contexts, before diving into specific technologies such as machine learning, natural language processing, computer vision, and chatbots.

We explore how these tools are already at work in K–12 schools, universities, and workplace training programs. We look at the tangible benefits—enhanced learning outcomes, reduced administrative load, and new opportunities for bridging educational divides—as well as the challenges and limitations that educators and policymakers must address.

Real-world case studies illustrate both successes and missteps, offering valuable lessons for institutions embarking on their own AI integration journeys. The discussion extends into the future, examining emerging trends such as AI-powered augmented reality and large-scale personalized learning, along with the policies and regulations that will shape their implementation.

This book is intended for educators, academic leaders, policymakers, edtech developers, and anyone interested in understanding how AI is redefining the learning experience. It aims to provide not just technical explanations but also practical insights, strategic frameworks, and ethical perspectives.

In writing *AI in Education Today*, my hope is to spark meaningful conversations about how we can harness AI not as a replacement for human educators, but as a partner in nurturing curiosity, critical thinking, and creativity in learners. The future of education is not solely about machines or algorithms—it is about the collaboration between human intellect and technological innovation, working together to create a more inclusive, adaptive, and inspiring learning environment for all.

Dr. V. N. Rajavarman
Dr. V. Saishanmuga Raja
Mr. Suresh R.
Dr. Senthilvelan. G

- Authors

ABSTRACT

AI in Education Today explores how Artificial Intelligence is transforming teaching, learning, and academic administration across K–12, higher education, and corporate training. The book examines core AI concepts, historical developments, and current applications, including machine learning, natural language processing, computer vision, and virtual tutoring systems. Through case studies, it highlights both successful implementations and lessons learned from challenges. The text addresses ethical considerations, such as data privacy, bias, and equitable access, while offering insights into emerging trends and policy frameworks. This comprehensive resource is designed to help educators, policymakers, and technologists integrate AI effectively and responsibly in educational contexts.

Keywords - Artificial Intelligence, AI in education, adaptive learning, intelligent tutoring systems, machine learning, natural language processing, computer vision, chatbots, virtual tutors, personalized learning, educational technology, data privacy, AI ethics, bias in AI, EdTech, digital transformation in education, lifelong learning, educational policy, augmented reality in education

QUOTATBLE QUOTES

Sundar Pichai (CEO of Google):

“The future of AI is not about replacing humans, it’s about augmenting human capabilities.”

Ginni Rometty (Former CEO of IBM):

“AI will not replace humans, but those who use AI will replace those who don’t.”

Matt Miller (Author, AI for Educators):

“In the end, if using AI tools cuts your planning time from 30 minutes to 18 minutes—or your grading time from 40 minutes to 22—that extra time it creates is yours. Use it however you wish.”

Eliezer Yudkowsky (AI researcher and writer):

“By far, the greatest danger of Artificial Intelligence is that people conclude too early that they understand it.”

Table of Contents

Introduction.....	5
1.1 What is Artificial Intelligence?.....	10
1.1.1 Definitions and Key Concepts.....	15
1.1.2: Types of AI: Narrow vs. General.....	21
1.2: Evolution of AI in Educational Contexts	25
1.2.1 Early Computer-Assisted Learning	29
1.2.2 Intelligent Tutoring Systems	33
1.3: Why AI Matters in Today's Classrooms.....	38
1.3.1 Changing Learner Demographics	42
1.3.2 Post-Pandemic EdTech Acceleration.....	47
Chapter 2.0: AI Technologies in Use.....	53
2.1 Machine Learning & Education	58
2.1.1 Predictive Analytics	62
2.1.2 Adaptive Learning Platforms	66
2.2 Natural Language Processing (NLP).....	70
2.2.1 AI Writing Assistants.....	75
2.2.2 Language Learning Apps.....	80
2.3 Computer Vision.....	84
2.3.1 Facial Recognition for Attendance.....	88
2.3.2 Emotion Detection in Classrooms	92
2.4 Chatbots and Virtual Tutors.....	96
2.4.1 24/7 Support for Students.....	101
2.4.2 AI Teaching Assistants	106
Chapter 3.0: Applications of AI in Educational Settings	111
3.1 K-12 Education: Personalization through AI – A Parallel to Precision Healthcare	118
3.1.1: Personalized Learning Plans	122
3.1.2: Gamification and AI	127
3.2: Higher Education	131

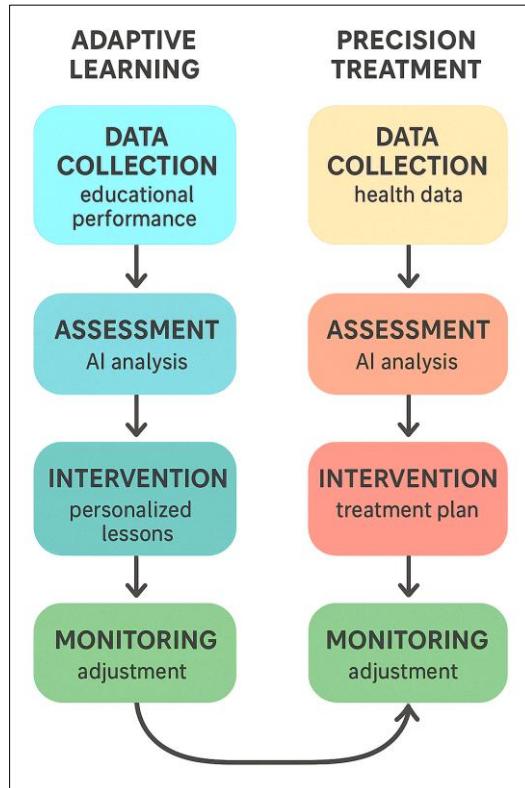
3.2.1: AI in Admissions and Advising.....	136
3.2.2: Research Support and Automation	140
3.3: Corporate and Lifelong Learning	145
3.3.1: AI-Driven Upskilling	150
3.3.2 Personalized Learning Paths in the Workplace	154
Chapter 4.0: Benefits and Opportunities	159
4.1: Enhancing Learning Outcomes.....	164
4.2: Supporting Teachers.....	170
4.3: Reducing Administrative Load.....	174
4.4: Bridging Learning Gaps.....	179
Chapter 5.0: Challenges and Ethical Concerns.....	183
5.1: Data Privacy and Security.....	188
5.2: Bias and Fairness in AI Systems	193
5.3: Over-Reliance on Automation	198
5.4: AI Literacy Among Educators.....	202
Chapter 6.0: Case Studies.....	207
6.1: Successful Implementations.....	211
6.1.1 Khan Academy and AI Tools	215
6.1.2 Coursera and Adaptive Learning	219
6.2 Lessons Learned	223
6.2.1 Failed Integrations.....	227
6.2.1 Failed Integrations.....	230
6.2.2 Misuse of AI in Classrooms.....	233
Chapter 7.0: The Future of AI in Education	237
7.1 Emerging Trends.....	241
7.1.1 AI and Augmented Reality.....	245
7.1.2 Personalized Learning at Scale	249
7.2 Policy and Regulation	253
7.2.1 Governmental Frameworks.....	257
7.2.2 Institutional Guidelines	261

7.3 Preparing for an AI-Augmented Future.....	265
Chapter 8.0: Conclusion	269
8.1: Summary of Key Insights	272
8.2 The Human Element in AI-Driven Learning.....	275
8.3: Final Thoughts and Call to Action.....	277
References.....	279

Chapter 1.0: Introduction to AI in Education

Introduction

In the transforming healthcare landscape, Artificial Intelligence (AI) plays a pivotal role as a change agent, much like advanced medical technology, such as precision healthcare. Similarly, AI in education facilitates 'data-driven' personalization through tailored, adaptive, and learner-centered strategies that respond to students' cognitive and emotional needs, enabling more precise learning experiences to be tailored to individual learners. These two fields serve to underscore the growing relevance of personalized learning, which fundamentally reconfigures the design and methods of education to fit the needs of each learner.


The Pillars of AI in Education

The term artificial intelligence refers to computer systems that recreate human processes such as learning, reasoning, and problem-solving. In the context of education, AI includes natural language processing, computer vision, and machine learning, among other technologies that can make education more responsive and intelligent. The last few decades have seen limited application of AI to education, with the school AI tutors and simple analytics tools being the most sophisticated forms of educational technology. However, the availability of affordable computing and large datasets (big data) has put AI at the forefront of innovations in educational technology. AI systems have proven useful in streamlining administrative tasks, automating assessments, providing real-time feedback, and delivering content tailored to the individual learner. The objective remains the same: to establish intelligent environments that provide learners with precise and timely support commensurate with their needs, tailored to their specific learning pathways, much like precision diagnostics and interventions in the healthcare domain (Topol, 2019).

Personalized Learning as an Educational Imperative

Personalized learning takes instructional approaches that tailor to the individual strengths, needs, skills, and interests of each learner. With AI-powered personalization, data is used to assess learner performance and modify content delivery. Just as predictive models and wearable devices in healthcare monitoring respond to patient biomarkers in real-time (Esteva et al., 2019), adaptive learning

platforms, such as DreamBox Learning or Century Tech, modify instructional pathways in real-time based on learner input. These AI systems forecast learning outcomes, propose remedial resources, and promote metacognitive self-assessment by utilizing algorithms trained on a vast array of documents. For example, Carnegie Learning's MATHia incorporates feedback loops similar to those found in clinical decision support systems, enabling educators and learners to intervene optimally during the learning process.

Figure 1: Flowchart comparing parallels in AI-driven adaptive learning cycles with precision treatment pathways in clinical settings.

This flowchart serves as a visual aid for comparing the cyclical nature of AI-driven adaptive learning methodologies in education with precision treatment planning in healthcare. Both systems begin with data collection, including educational performance metrics for students and health data for patients. These datasets are processed to identify learning gaps or health risks, utilizing AI algorithms tailored for such diagnostics. Following the evaluation, targeted interventions such as personalized lessons or treatment plans are implemented. Active surveillance enables dynamic, individualized adjustments in both domains, optimizes outcomes, and facilitates feedback-driven improvement cycles.

Decision Support Systems Powered by AI: Education and Healthcare

AI technologies are closely aligned with clinical decision support systems in healthcare, as learning analytics and educational AI provide data-driven planning and instructional support to educators. Educational analytics dashboards, such as those on Knewton or Edmodo, display and track student engagement, identify at-risk learners, and provide pedagogical intervention suggestions. This parallels the role of electronic health records (EHRs) and AI-assisted diagnostic tools in hospitals, where they provide real-time surveillance of patients, augmenting predictive windows for desired outcomes (Rajpurkar et al., 2022). AI's role in both professions serves to alleviate cognitive overload on human experts by sifting enormous quantities of raw data to extract actionable insights.

Table 1: Overview of AI Use in Tailored Education and Specialized Healthcare

Domain	AI Application	Function	Example Tool/Platform	Outcome
Education	Adaptive Learning Systems	Tailor's instruction to the learning pace	DreamBox Learning	Increased student mastery and engagement
Education	Predictive Learning Analytics	Identifies at-risk students	Knewton	Early academic interventions
Education	Intelligent Tutoring Systems	Simulates personalized tutoring	MATHia (Carnegie Learning)	Real-time cognitive feedback
Healthcare	AI-based Diagnostic Algorithms	Detects disease patterns	IBM Watson Health	Accurate diagnoses
Healthcare	Clinical Decision Support Systems	Recommends treatment plans	Aidoc	Improved treatment outcomes
Healthcare	Remote Monitoring & Wearables	Tracks patient biometrics in real-time	Fitbit Health Solutions	Preventive care & early warnings

Social Justice Issues

With all the potential AI offers, its privacy concerns, biased algorithms, and inequity gaps present risks of overarching concern. Predominantly in the education and health care services, there is a threat of data collection and underrepresentation of marginalized communities, leading to outcome inequities and entrenched systemic biases (Veale & Binns, 2017). For instance, racial bias as recorded in diagnostic AI systems is also evident in proctoring scan face recognition accuracy, having reduced performance with students of color. Incorporating stakeholder input, risk mitigation, validation, and participatory design all work towards exposing the hidden biases and inequitable gaps. Schools, like healthcare institutions that utilize AI in caregiving systems, must assume the responsibility of ensuring fairness for all students while promoting inclusive and unbiased educational outcomes.

Case Example: AI for Special Needs Education

One of the most compelling examples of AI's potential is its application for students with special educational needs (SEN). Cognimates and AlterEgo employ voice and neurofeedback technologies to tailor teaching for learners with motor or speech difficulties. These tools function like rehabilitative assistive technologies, where AI supports individuals with neurological disabilities in communicating. Perhaps the most important example is a child diagnosed with autism spectrum disorder, who interacted with "Replika", an AI social-emotional learning application. Over several months, the system adjusted the language and emotional tone it used based on the child's responses. This reflects the application of CBT strategies in precision mental healthcare (Gonzalez et al., 2021).

Interdisciplinary Collaboration: Education, Data Science, and Medicine

The integration of AI within the realms of healthcare and education reflects a more profound, more systemic change toward cross-disciplinary innovation. Projects such as "Learning Engineering," which is backed by Carnegie Mellon University, leverage cognitive psychology, computer science, and even medical simulation to create more effective educational infrastructure. Similarly, frameworks like "Precision Education," proposed by Holmes et al. (2022), recommend learning diagnostics to be on the same level as those used in personalized medicine. These frameworks aim to predict academic outcomes and prescribe tailored teaching strategies by analyzing assessment data at the levels of eye-tracking, clickstream, and EEG.

Policy Implications and Future Work

The development of more advanced AI systems also increases the urgency for policy-making. Ethos and digital literacy campaigns tailored to educators, as well as fostering innovation with equity, are among the key stepping stones to be addressed.

On a brighter note, UNESCO's 2021 AI in Education Guidelines advocate for "human-centered design," which aligns with the WHO's Trustworthy AI in Healthcare principles.

Future work should focus more on the explicability of cross-domain datasets, explanations of AI principles, and collaborative governance in AI technology. As educational ecosystems are augmented with greater intelligence, the question shifts from whether AI will change how we learn to how it will do so responsibly and inclusively.

Conclusion

The integration of AI into education is similar to the profound changes brought about by data-driven personalization in the healthcare sector. Predictive analytics and intelligent tutoring, coupled with adaptive learning systems, enable educators to address each learner's needs with unmatched accuracy. The potential of these tools, however, raises concerns that need to be addressed alongside ethical implications and equitable design frameworks. The ongoing interplay of these domains suggests that the future of AI in education will enhance learning outcomes while also deepening our understanding of the human mind, behavior, and potential.

1.1 What is Artificial Intelligence?

Introduction

Through AI, the field of education is undergoing a transformation due to its ability to provide customized, individualized learning pathways, similar to the personalized interventions in precision medicine. AI in education works like algorithms in data analytics—allowing instructors to devise lessons tailored to each student's learning patterns, behaviors, and historical performance. The relationship between personalization in teaching and healthcare highlights the potential of AI in driving targeted human advancement.

Defining Artificial Intelligence in Educational Contexts

Artificial Intelligence systems are capable of automating tasks that humans typically perform, such as learning, problem-solving, skill perception, and decision-making (Russell & Norvig, 2021). AI in education refers to the application of technologically driven cognitive simulation that assists in the learning process. Such educational technology includes algorithms for machine learning and natural language processing, as well as intelligent agents that enable systems to adapt content delivery, provide real-time feedback, and perform automated evaluation exercises.

AI in education can further be classified into two primary branches:

Narrow AI, which performs pre-defined functions, for example, adaptive testing and grading. **General AI**, which has not yet been widely adopted, aims to achieve multi-domain, cross-situational, and complex human reasoning.

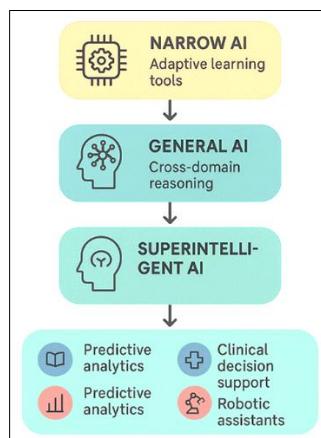


Figure 1.1: Types of AI with applications in education and healthcare.

References

- Abbas, Q., Khan, M. A., & Ahmad, J. (2021). Facial expression recognition in e-learning environments using deep learning. *Interactive Learning Environments*, 29(5), 778–797.
- Adamson, A. S., & Smith, A. (2018). Machine learning and health care disparities in dermatology. *JAMA Dermatology*, 154(11), 1247–1248.
- Aleven, V., McLaughlin, E. A., Glenn, R., & Koedinger, K. R. (2018). Intelligent tutoring systems for learning programming: A meta-analysis. *International Journal of Artificial Intelligence in Education*, 28(3), 475-518.
- Arnold, K. E., & Pistilli, M. D. (2012). Course Signals at Purdue: Using Learning Analytics to Increase Student Success. *Proceedings of the 2nd International Conference on Learning Analytics and Knowledge*, 267-270.
- Baer, L., & Campbell, J. P. (2020). *Academic analytics: Building a data-informed campus to support student success*. EDUCAUSE Review.
- Bailey, T., Jaggers, S. S., & Jenkins, D. (2020). *Redesigning America's Community Colleges: A Clearer Path to Student Success*. Harvard University Press.
- Baker, R. S., & Inventado, P. S. (2018). Educational data mining and learning analytics. In *Learning analytics* (pp. 61–75). Springer.
- Baker, R. S., & Inventado, P. S. (2020). Educational data mining and learning analytics. In *Learning Analytics* (pp. 61–75). Springer.
- Baker, R. S., & Inventado, P. S. (2021). Educational data mining and learning analytics. *The Cambridge Handbook of Learning Sciences*, 2nd ed., 253–274.
- Baral, I., Pathak, R., & Nandi, A. (2022). Conversational AI in education: Emerging trends and research opportunities. *Education and Information Technologies*, 27(2), 1681–1702.
- Barros, P., Parisi, G. I., Jirak, D., & Wermter, S. (2021). Multimodal affective interaction with an embodied conversational agent. *Journal of Artificial Intelligence Research*, 70, 1085–1120.
- Bitzer, D. L., & Lyman, E. R. (2005). PLATO: From computer-based education to corporate social responsibility. *Technology and Society Magazine, IEEE*, 24(3), 9–14.
- Bleas, C., Kharko, A., Bernstein, M. H., Gaab, J., Kapchuk, T. J., & Mandl, K. D. (2019). Artificial intelligence and the future of primary care: Exploratory qualitative study of UK general practitioners' views. *Journal of Medical Internet Research*, 21(3), e12802.

- Brossard, M., Cardoso, M., & Hepp, P. (2022). Digital learning in the post-COVID-19 era: Strengthening systems for resilient futures. *UNICEF Office of Global Insight and Policy*.
- Buolamwini, J., & Gebru, T. (2018). Gender shades: Intersectional accuracy disparities in commercial gender classification. *Proceedings of Machine Learning Research*, 81, 1-15.
- Carbonell, J. R. (1970). AI in CAI: An artificial-intelligence approach to computer-assisted instruction. *IEEE Transactions on Man-Machine Systems*, 11(4), 190–202.
- Castelvecchi, D. (2020). The flaws in AI that doomed the A-level grades. *Nature*, 584(7822), 506–507.
- Chen, C., Yang, J., & Liu, H. (2022). Smart classrooms and facial recognition: Real-time monitoring and ethical concerns. *Educational Technology & Society*, 25(3), 45–56.
- Chen, G., Clarke, S., & Wang, Y. (2021). Enhancing student engagement through computer vision-based analytics in blended learning. *Computers & Education*, 165, 104150.
- Chen, I. Y., Joshi, S., Ghassemi, M., & Wallach, H. (2020). Ethical machine learning in health care. *Annual Review of Biomedical Data Science*, 3(1), 123–144.
- Chen, J., & Zhang, R. (2020). Emotion recognition in online education systems: A review of methods and applications. *IEEE Transactions on Learning Technologies*, 13(2), 440–452.
- Chen, M., Hao, Y., Cai, Y., Wang, Y., & Zhang, X. (2020). Intelligent healthcare: Cyber-physical systems for personalized medicine. *Journal of Ambient Intelligence and Humanized Computing*, 12(6), 6691–6707.
- Chen, X., Xie, H., & Hwang, G. J. (2022). A systematic review of artificial intelligence in personalized education: Implications for policy and practice. *Journal of Educational Computing Research*, 60(6), 1443–1473.
- Chen, X., Xu, W., & Li, Y. (2022). Assistive AI in education: An evaluation of Microsoft's Immersive Reader for inclusive learning. *International Journal of Educational Technology in Higher Education*, 19(2), 112-126.
- Chen, Y., Zhao, Y., & Zhang, H. (2023). Intelligent tutoring systems and virtual agents in education: A systematic review. *Interactive Learning Environments*, 31(1), 55–73.
- Cheng, L. (2021). AI-enabled personalization in enterprise learning: A cognitive systems approach. *Journal of Workplace Learning*, 33(7), 521–537.

- Chien, J. T., & Lin, S. (2021). Applications of AutoML and AI in educational research analytics. *Journal of Educational Data Science*, 1(2), 45–60.
- Chollet, F. (2019). On the Measure of Intelligence. *arXiv preprint arXiv:1911.01547*.
- Dede, C. (2021). The Role of Teachers in Personalized Learning. *Educational Technology*, 61(4), 25-30.
- Demner-Fushman, D., Rogers, W. J., & Aronson, A. R. (2020). MetaMap Lite: An evaluation of a new Java implementation of MetaMap for clinical NLP. *Journal of the American Medical Informatics Association*, 27(1), 128–132.
- Denecke, K., & Nejdl, W. (2020). How to evaluate medical NLP systems: A review of resources and evaluation strategies. *BMC Medical Informatics and Decision Making*, 20(1), 1-12.
- Denecke, K., Bamidis, P., Bond, C., Gabarron, E., Househ, M., Lau, A. Y. S., & Hansen, M. (2021). Ethical considerations of AI-driven educational technologies in data-sensitive contexts. *Journal of Information Ethics*, 30(2), 72–88.
- Denley, T. (2020). Using predictive analytics to improve student outcomes: A case study from Georgia State University. *Change: The Magazine of Higher Learning*, 52(3), 25–32.
- Dey, D., Slomka, P., Leeson, P., Comaniciu, D., & Pozo, E. (2020). Artificial intelligence in cardiovascular imaging: JACC state-of-the-art review. *Journal of the American College of Cardiology*, 76(11), 1317–1335. <https://doi.org/10.1016/j.jacc.2020.07.033>
- D'Mello, S. K., & Graesser, A. C. (2017). Feeling, thinking, and computing with affect-aware learning technologies. In R. A. Calvo, S. K. D'Mello, J. Gratch, & A. Kappas (Eds.), *The Oxford Handbook of Affective Computing* (pp. 419–434). Oxford University Press.
- Esteva, A., Robicquet, A., Ramsundar, B., Kuleshov, V., DePristo, M., Chou, K., ... & Dean, J. (2019). A guide to deep learning in healthcare. *Nature Medicine*, 25(1), 24–29.
- Esteva, A., Robicquet, A., Ramsundar, B., Kuleshov, V., DePristo, M., Chou, K., ... & Dean, J. (2021). A guide to deep learning in healthcare. *Nature Medicine*, 27(6), 857–867.
- Esteva, A., Robicquet, A., Ramsundar, B., Kuleshov, V., DePristo, M., Chou, K., ... & Dean, J. (2021). A guide to deep learning in healthcare. *Nature Medicine*, 27(5), 782-797.

- Esteva, A., Robicquet, A., Ramsundar, B., Kuleshov, V., DePristo, M., Chou, K., ... & Dean, J. (2019). A guide to deep learning in healthcare. *Nature Medicine*, 25(1), 24–29.
- Esteva, A., Robicquet, A., Ramsundar, B., Kuleshov, V., DePristo, M., Chou, K., ... & Dean, J. (2021). A guide to deep learning in healthcare. *Nature Medicine*, 27(1), 15–25.
- European Commission. (2021). *Proposal for a Regulation laying down harmonised rules on artificial intelligence (Artificial Intelligence Act)*. <https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52021PC0206>
- Fagherazzi, G., Goetzinger, C., Rashid, M. A., Aguayo, G. A., & Huiart, L. (2019). Digital health strategies to fight COVID-19 worldwide: Challenges, recommendations, and a call for papers. *Journal of Medical Internet Research*, 21(6), e19284.
- Fitzpatrick, K. K., Darcy, A., & Vierhile, M. (2017). Delivering cognitive behavior therapy to young adults with symptoms of depression and anxiety using a fully automated conversational agent (Woebot): A randomized controlled trial. *JMIR Mental Health*, 4(2), e19.
- Ghassemi, M., Naumann, T., Schulam, P., Beam, A. L., & Ranganath, R. (2018). Opportunities in machine learning for healthcare. *Nature Biomedical Engineering*, 2(10), 938–947.
- Ghassemi, M., Oakden-Rayner, L., & Beam, A. L. (2021). The false hope of current approaches to explainable artificial intelligence in health care. *The Lancet Digital Health*, 3(11), e745–e750.
- Ghosh, R., & Scott, J. (2019). Artificial intelligence in academia: Ethical concerns and use cases. *AI and Society*, 34(4), 733–741.
- Ghosh, R., Dutt, P., & Narayanan, S. (2022). Conversational AI for mental health support: A review of current technologies and future directions. *Journal of Medical Internet Research*, 24(7), e38012.
- Goel, A., & Joyner, D. (2021). The design and impact of Jill Watson: A virtual teaching assistant for online education. *International Journal of Artificial Intelligence in Education*, 31(2), 244–265.
- Goertzel, B., & Pennachin, C. (2019). Artificial general intelligence: Concept, state of the art, and future prospects. *Journal of Artificial General Intelligence*, 10(1), 1–46.
- Gonzalez, R., Tseng, J., & Xu, Y. (2021). The use of conversational AI in autism intervention: Potential and challenges. *Journal of Artificial Intelligence Research*, 70, 457–486. <https://doi.org/10.1613/jair.1.12267>

- Graesser, A. C., McNamara, D. S., & VanLehn, K. (2018). Scaffolding deep learning with conversational agents. In *Educational Psychologist*, 53(4), 204-220. <https://doi.org/10.1080/00461520.2018.1457649>
- Greenes, R. A. (2018). *Clinical decision support: The road ahead*. Academic Press.
- Greenes, R. A., & Shortliffe, E. H. (2018). *Clinical decision support: The road ahead*. Academic Press.
- Gulshan, V., Peng, L., Coram, M., Stumpe, M. C., Wu, D., Narayanaswamy, A., ... & Webster, D. R. (2016). Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. *JAMA*, 316(22), 2402-2410.
- He, J., Baxter, S. L., Xu, J., Xu, J., Zhou, X., & Zhang, K. (2022). The practical implementation of artificial intelligence technologies in medicine. *Nature Medicine*, 28(4), 465-471.
- Holmes, W., Bialik, M., & Fadel, C. (2021). *Artificial Intelligence in Education: Promises and Implications for Teaching and Learning*. Center for Curriculum Redesign.
- Holmes, W., Bialik, M., & Fadel, C. (2022). *Artificial intelligence in education: Promises and implications for teaching and learning*. Boston: Center for Curriculum Redesign.
- Holmes, W., Bialik, M., & Fadel, C. (2023). *Artificial intelligence in education: Promises and implications for teaching and learning*. Center for Curriculum Redesign.
- Holmes, W., Porayska-Pomsta, K., & Holstein, K. (2021). Ethics and privacy in AI and education: A review of current issues and future directions. *British Journal of Educational Technology*, 52(4), 1551-1570. <https://doi.org/10.1111/bjet.13031>
- Holmes, W., Porayska-Pomsta, K., Holstein, K., Sutherland, E., & Baker, T. (2021). Artificial intelligence in education: Promise and implications for teaching and learning. *OECD Publishing*. <https://www.oecd.org/education/artificial-intelligence-in-education.htm>
- Holstein, K., McLaren, B. M., & Aleven, V. (2019). Co-Designing a Real-Time Classroom Orchestration Tool to Support Teacher-AI Complementarity. *Human-Computer Interaction*, 34(5-6), 539-582.
- Holstein, K., McLaren, B. M., & Aleven, V. (2019). Co-designing a real-time classroom orchestration tool to support teacher-AI complementarity. *International Journal of Artificial Intelligence in Education*, 29(2), 223-257.

- Holstein, K., McLaren, B. M., & Aleven, V. (2020). Co-designing AI-based learning support with teachers: A case study in middle school mathematics. *International Journal of Artificial Intelligence in Education*, 30(3), 400–431.
- Holstein, K., McLaren, B. M., & Aleven, V. (2020). Designing for real-time classroom orchestration: The orchestration graph model and learning analytics architecture. *Journal of Learning Analytics*, 7(2), 43–60.
- Holstein, K., Wortman Vaughan, J., Daumé, H., Dudik, M., & Wallach, H. (2019). Improving fairness in machine learning systems: What do industry practitioners need? *Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems*, 1–16.
- Holstein, K., Wortman Vaughan, J., Daumke, P., Dudik, M., & Wallach, H. (2019). Improving fairness in AI-assisted decision making. *Communications of the ACM*, 62(12), 104-113.
- Huang, R., Liu, D., Tlili, A., Yang, J., & Wang, H. (2020). Handbook on Facilitating Flexible Learning During Educational Disruption: The Chinese Experience in Maintaining Undisrupted Learning in COVID-19 Outbreak. *Smart Learning Institute of Beijing Normal University*.
- Ifenthaler, D., & Yau, J. Y. K. (2020). Utilising learning analytics for study success: Reflections on current empirical findings. *International Journal of Learning Analytics and Artificial Intelligence for Education*, 2(1), 1–17.
- Ifenthaler, D., & Yau, J. Y. K. (2020). Utilising learning analytics to support study success in higher education: A systematic review. *Educational Technology Research and Development*, 68(4), 1961–1990.
- Inkster, B., Sarda, S., & Subramanian, V. (2018). An empathy-driven, conversational artificial intelligence agent (Wysa) for digital mental well-being: Real-world data evaluation. *JMIR mHealth and uHealth*, 6(11), e12106.
- Jiang, F., Jiang, Y., Zhi, H., Dong, Y., Li, H., Ma, S., ... & Wang, Y. (2017). Artificial intelligence in healthcare: Past, present and future. *Stroke and Vascular Neurology*, 2(4), 230–243. <https://doi.org/10.1136/svn-2017-000101>
- Jormanainen, I., & Siltanen, S. (2021). Promoting AI literacy through teacher education: A Finnish approach. *Technology, Knowledge and Learning*, 26(3), 527–546.
- Kattel, R., & Mergel, I. (2021). Estonia's digital transformation: Mission mystique and the hiding hand. *Public Management Review*, 23(2), 293–314.
- Kaul, A., & Kumar, A. (2023). Designing equitable emotion recognition systems for diverse classrooms. *Educational Technology Research and Development*, 71(1), 65–84.

- Kellermeyer, L., Hoggatt, J., & Roehrig, C. (2019). Digital therapeutics and personalized behavioral healthcare. *Journal of Personalized Medicine*, 9(4), 47.
- Kiani, A., Uyumazturk, B., Rajpurkar, P., Wang, H., Jones, E., & Yu, Y. (2020). Impact of a deep learning assistant on the histopathologic classification of liver cancer. *NPJ Digital Medicine*, 3(1), 1-8.
- Kizilcec, R. F., Saltarelli, A. J., Reich, J., & Cohen, G. L. (2017). Closing global achievement gaps in MOOCs. *Science*, 355(6322), 251-252.
- Kraus, S., Schiavone, F., Pluzhnikova, A., & Invernizzi, A. C. (2023). Towards responsible AI use in HR: Ethical considerations and strategic alignment. *Technological Forecasting and Social Change*, 187, 122265.
- Krause, M., Smedegaard, S., & Müller, J. (2021). Co-designing AI technologies with teachers and students: Ethical, pedagogical, and social implications. *British Journal of Educational Technology*, 52(5), 1932-1945.
- Kukreja, N., & Porter, A. (2022). Adaptive learning systems in practice: An overview and case-based analysis. *British Journal of Educational Technology*, 53(3), 587-603.
- Lee, D., Park, Y., & Kim, H. (2022). Computer vision in surgical training: Real-time assessment and feedback. *Journal of Surgical Education*, 79(3), 487-496.
- Lee, J., & Kim, Y. (2020). Redesigning AI tutoring systems for privacy compliance in East Asian education. *AI & Society*, 35(4), 821-834.
- Lee, J., & Kwon, H. (2023). Federated learning in healthcare and education: A cross-sectoral perspective. *Computers in Human Behavior*, 143, 107691.
- Lee, J., & Kwon, Y. (2021). AI-enabled microlearning: A new paradigm in corporate training. *Journal of Workplace Learning*, 33(5), 377-393.
- Lee, M., Kim, Y., & Choi, H. (2023). Artificial intelligence in precision medicine: A systematic review of clinical applications. *BMC Medical Informatics and Decision Making*, 23(1), 112.
- Li, J., Zhao, Y., Xia, Y., & Xu, Y. (2020). Symptom checker powered by AI: Application and evaluation in clinical scenarios. *Journal of Biomedical Informatics*, 108, 103-119.
- Lim, C. P. (2020). Envisioning the Future of Education with AI: Lessons from Singapore. *Asia Pacific Journal of Education*, 40(4), 529-545.
- Lim, C. P., & Wang, L. (2022). Policy frameworks for AI in education: Lessons from Singapore. *Educational Technology Research and Development*, 70(3), 1035-1052.
- Lim, J., & Ng, E. (2020). AI and lifelong learning: Lessons from Singapore's SkillsFuture. *International Journal of Educational Development*, 75, 102234.

- Liu, Q., Huang, Z., & Yu, S. (2020). Adaptive learning with deep reinforcement learning in educational platforms. *Computers & Education*, 153, 103893.
- Liu, R., Rusk, N., & Pea, R. (2020). AI and the future of learning: Expert panel synthesis report. *OECD Education Working Papers*, 227.
- Luan, H., Tsai, C. C., & Chang, C. Y. (2020). The effects of AI-based personalized feedback on students' motivation and academic performance: An empirical study. *Computers & Education*, 153, 103906.
- Luckin, R., Cukurova, M., & Holmes, W. (2022). Educator-AI partnerships for effective pedagogy: A systematic framework. *British Journal of Educational Technology*, 53(3), 601-617.
- Luckin, R., Holmes, W., Griffiths, M., & Forcier, L. B. (2018). Intelligence unleashed: An argument for AI in education. *Pearson Education*. Retrieved from <https://www.pearson.com/ai-in-education>
- Luckin, R., Holmes, W., Griffiths, M., & Forcier, L. B. (2019). Intelligence unleashed: An argument for AI in education. *Pearson Education*.
- Luckin, R., Holmes, W., Griffiths, M., & Forcier, L. B. (2022). Intelligence unleashed: An argument for AI in education. *British Journal of Educational Technology*, 53(2), 215-232.
- Marcolino, M. S., Oliveira, J. A. Q., D'Agostino, M., Ribeiro, A. L., Alkmim, M. B., & Novillo-Ortiz, D. (2018). The impact of mHealth interventions: Systematic review of systematic reviews. *JMIR mHealth and uHealth*, 6(1), e23.
- Martin, A. R., Kanai, M., Kamatani, Y., Okada, Y., Neale, B. M., & Daly, M. J. (2019). Clinical use of current polygenic risk scores may exacerbate health disparities. *Nature Genetics*, 51(4), 584-591.
- Means, B., Neisler, J., & Langer Research Associates. (2020). *Distance Learning Strategies in the COVID-19 Pandemic*. SRI International.
- Means, B., Neisler, J., & Langer Research Associates. (2020). *Lessons learned from early implementation of adaptive courseware*. SRI International.
- Mesko, B., Hetényi, G., & Gyorffy, Z. (2018). Will artificial intelligence solve the human resource crisis in healthcare? *BMC Health Services Research*, 18(1), 545.
- Miotto, R., Wang, F., Wang, S., Jiang, X., & Dudley, J. T. (2018). Deep learning for healthcare: Review, opportunities and challenges. *Briefings in Bioinformatics*, 19(6), 1236-1246.
- Mittelstadt, B. D., Allo, P., Taddeo, M., Wachter, S., & Floridi, L. (2016). The ethics of algorithms: Mapping the debate. *Big Data & Society*, 3(2), 1-21.

- Morley, J., Floridi, L., Kinsey, L., & Elhalal, A. (2020). From what to how: An initial review of publicly available AI ethics tools, methods and research to translate principles into practices. *Science and Engineering Ethics*, 26(4), 2141-2168.
- Morley, J., Luciano, F., Selby, H., & Floridi, L. (2021). From what to how: An initial review of publicly available AI ethics tools, methods and research to translate principles into practices. *Science and Engineering Ethics*, 27(1), 1-31.
- Mouza, C., Yang, H., Pan, Y. C., Ozden, S. Y., & Pollock, L. (2020). Resetting educational technology coursework for pre-service teachers: A computational thinking approach to the development of technological pedagogical content knowledge (TPACK). *Australasian Journal of Educational Technology*, 36(1), 31-45.
- Muralidharan, K., Singh, A., & Ganimian, A. J. (2019). Disrupting education? Experimental evidence on technology-aided instruction in India. *American Economic Review*, 109(4), 1426-1460.
- Ng, W. (2021). Exploring the impact of AI-powered feedback tools in higher education. *British Journal of Educational Technology*, 52(5), 2031-2049.
- Nkambou, R., Bourdeau, J., & Mizoguchi, R. (2010). *Advances in Intelligent Tutoring Systems*. Springer.
- Obermeyer, Z., & Emanuel, E. J. (2016). Predicting the future – big data, machine learning, and clinical medicine. *New England Journal of Medicine*, 375(13), 1216-1219. <https://doi.org/10.1056/NEJMp1606181>
- Obermeyer, Z., Powers, B., Vogeli, C., & Mullainathan, S. (2019). Dissecting racial bias in an algorithm used to manage the health of populations. *Science*, 366(6464), 447-453.
- Pane, J. F., Griffin, B. A., McCaffrey, D. F., & Karam, R. (2014). *Effectiveness of Cognitive Tutor Algebra I at Scale*. RAND Corporation.
- Pane, J. F., Steiner, E. D., Baird, M. D., & Hamilton, L. S. (2017). *Informing progress: Insights on personalized learning implementation and effects*. RAND Corporation. https://www.rand.org/pubs/research_reports/RR2042.html
- Pane, J. F., Steiner, E. D., Baird, M. D., Hamilton, L. S., & Pane, J. D. (2019). *Informing Progress: Insights on Personalized Learning Implementation and Effects*. RAND Corporation.
- Panigrahi, R., Panda, S., & Sharma, R. C. (2023). Digital education initiatives in India: Building inclusive and scalable AI infrastructures. *International Review of Research in Open and Distributed Learning*, 24(1), 22-39.

- Park, C., Lee, J., & Kim, H. (2022). Real-time emotion analytics using facial cues in smart learning environments. *Computers & Education*, 182, 104482.
- Patel, V., Saxena, S., Lund, C., Thornicroft, G., Baingana, F., Bolton, P., ... & Unützer, J. (2020). The Lancet Commission on Global Mental Health and Sustainable Development. *The Lancet*, 392(10157), 1553-1598.
- Pei, Y., Li, H., Wang, Y., & Jin, Y. (2021). Artificial intelligence applications in healthcare: Review and future directions. *Journal of Healthcare Engineering*, 2021, 1-12. <https://doi.org/10.1155/2021/6677313>
- Perelman, L. (2019). Critique of automated essay scoring systems: Focusing on fairness and transparency. *Journal of Writing Assessment*, 12(1), 1-18.
- Piau, A., Wild, K., Mattek, N., Kaye, J., & Rigaud, A. S. (2019). Current state of digital biomarker technologies for real-life clinical use in aging: A systematic review. *Frontiers in Digital Health*, 1, 3.
- Rajkomar, A., Dean, J., & Kohane, I. (2018). Machine learning in medicine. *New England Journal of Medicine*, 380(14), 1347-1358.
- Rajkomar, A., Hardt, M., Howell, M. D., Corrado, G., & Chin, M. H. (2018). Ensuring fairness in machine learning to advance health equity. *Annals of Internal Medicine*, 169(12), 866-872.
- Rajpurkar, P., Chen, E., Banerjee, O., & Topol, E. J. (2022). AI in health and medicine. *Nature Medicine*, 28(1), 31-38.
- Rajpurkar, P., Irvin, J., Ball, R. L., Zhu, K., Yang, B., Mehta, H., ... & Ng, A. Y. (2022). Deep learning for chest radiograph diagnosis: A retrospective comparison of the CheXNeXt algorithm to practicing radiologists. *PLOS Medicine*, 19(5), e1003079. <https://doi.org/10.1371/journal.pmed.1003079>
- Rajpurkar, P., Irvin, J., Zhu, K., Yang, B., Mehta, H., Duan, T., ... & Ng, A. Y. (2022). CheXNet: Radiologist-level pneumonia detection on chest X-rays with deep learning. *PLoS Medicine*, 19(1), e1003974.
- Rajpurkar, P., Irvin, J., Zhu, K., Yang, B., Mehta, H., Duan, T., ... & Ng, A. Y. (2019). CheXNet: Radiologist-level pneumonia detection on chest X-rays with deep learning. *arXiv preprint arXiv:1711.05225*.
- Ravi, D., Wong, C., Deligianni, F., Berthelot, M., Andreu-Perez, J., Lo, B., & Yang, G. Z. (2020). Deep learning for human activity recognition: A review. *ACM Computing Surveys*, 52(2), 1-36.
- Ravindran, R., & Sundar, K. (2022). Intelligent learning ecosystems in IT enterprises: Insights from Infosys. *International Journal of Training and Development*, 26(1), 34-49.

- Rojas, J. C., Gagnon, M. P., & Duplantie, J. (2020). Integration of wearable devices and AI in patient monitoring: A review. *Journal of Biomedical Informatics*, 107, 103452.
- Roll, I., & Wylie, R. (2016). Evolution and revolution in artificial intelligence in education. *International Journal of Artificial Intelligence in Education*, 26(2), 582–599.
- Rumsfeld, J. S., Joynt, K. E., & Maddox, T. M. (2016). Big data analytics to improve cardiovascular care: Promise and challenges. *Nature Reviews Cardiology*, 13(6), 350–359.
- Russell, S., & Norvig, P. (2021). *Artificial Intelligence: A Modern Approach* (4th ed.). Pearson.
- Samek, W., Wiegand, T., & Müller, K. R. (2017). Explainable artificial intelligence: Understanding, visualizing and interpreting deep learning models. *arXiv preprint arXiv:1708.08296*.
- Schmid, U., & Petko, D. (2020). Artificial intelligence in education: Promise and implications for teaching and learning. *Zeitschrift für Erziehungswissenschaft*, 23(4), 743–763.
- Schwartzberg, L., Kim, E. S., Liu, D., & Schrag, D. (2020). Precision oncology: Who, how, what, when, and when not? *American Society of Clinical Oncology Educational Book*, (40), 160–169.
- Selwyn, N., & Pangrazio, L. (2019). Doing Data Differently? Developing Personal Data Tactics and Strategies amongst Young Mobile Media Users. *Big Data & Society*, 6(1), 1-12.
- Sendak, M. P., D'Arcy, J., Kashyap, S., Gao, M., Nichols, M., Corey, K., ... & Balu, S. (2020). A path for translation of machine learning products into healthcare delivery. *NPJ Digital Medicine*, 3(1), 1–10.
- Sharma, A., & Singh, R. (2019). Ethical implications of AI-based chatbots in higher education. *AI & Society*, 34(3), 565–576.
- Sheller, M. J., Edwards, B., Reina, G. A., Martin, J., Pati, S., & Bakas, S. (2020). Federated learning in medicine: Facilitating multi-institutional collaborations without sharing patient data. *Scientific Reports*, 10(1), 12598.
- Siemens, G., & Long, P. (2011). Penetrating the fog: Analytics in learning and education. *EDUCAUSE Review*, 46(5), 30-40.
- Smith, R., & Hernandez, C. (2021). Predictive analytics and learner success in MOOCs: Evidence from Coursera's Data Science Specialization. *Online Learning Journal*, 25(2), 88–104.

- Smuha, N. A. (2021). The EU approach to ethics guidelines for trustworthy artificial intelligence. *Computer Law Review International*, 22(4), 97–106.
- Sormunen, K., Räsänen, P., & Niemi, H. (2020). Building teachers' learning analytics literacy through professional development in Finnish schools. *Technology, Pedagogy and Education*, 29(4), 457–473.
- Stark, L. (2021). Facial recognition, emotion, and race in remote proctoring. *AI & Society*, 36(2), 487–497.
- Strubell, E., Ganesh, A., & McCallum, A. (2019). Energy and policy considerations for deep learning in NLP. *Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics*, 3645–3650.
- Sun, L., Zhang, Y., & Chen, X. (2022). AI-enhanced platforms for inclusive lifelong learning. *Computers & Education*, 185, 104515.
- Tamm, K., Ruubel, R., & Kaarli, K. (2021). Estonia's strategy for AI governance in public education. *AI and Society*, 36(3), 415–432.
- Tempelaar, D. T., Rienties, B., Mittelmeier, J., & Nguyen, Q. (2020). Student profiling in a dispositional learning analytics context: The role of need for cognition in student success. *International Journal of Artificial Intelligence in Education*, 30(3), 399–420.
- Tigwell, G. W., & Flatla, D. R. (2021). Enhancing accessibility through AI-based feedback tools: Evidence from non-native English academic writers. *British Journal of Educational Technology*, 52(4), 1325–1342.
- Topaz, M., Murga, L., & Gaddis, K. M. (2022). Mining nursing notes for clinical insights: An overview of current NLP approaches. *Journal of Biomedical Informatics*, 125, 103957.
- Topol, E. (2019). *Deep medicine: How artificial intelligence can make healthcare human again*. Basic Books.
- Topol, E. (2021). The convergence of AI and healthcare: Implications for the future. *The Lancet Digital Health*, 3(6), e346–e348.
- Topol, E. J. (2019). *Deep medicine: How artificial intelligence can make healthcare human again*. Basic Books.
- UNESCO. (2021). Education: From disruption to recovery. *United Nations Educational, Scientific and Cultural Organization*.
- UNESCO. (2021). *Recommendation on the ethics of artificial intelligence*. Paris: UNESCO Publishing.
- Van der Aalst, W. M. P. (2019). Process mining and its application in education and healthcare. *Computers in Industry*, 113, 103–118.

- van Dijck, J., & Poell, T. (2022). Governing AI in education: The role of ethics committees in data governance. *Learning, Media and Technology*, 47(1), 1-15.
- Van Dis, E. A. M., Bollen, J., Zuidema, W., van Rooij, R., & Bockting, C. L. H. (2020). Making AI research trustworthy: Recommendations for self-reflection. *Nature Machine Intelligence*, 2(10), 543-545.
- VanLehn, K. (2006). The behavior of tutoring systems. *International Journal of Artificial Intelligence in Education*, 16(3), 227-265.
- VanLehn, K., Lynch, C., Schulze, K., Shapiro, J. A., Shelby, R., Taylor, L., & Wintersgill, M. (2005). The Andes physics tutoring system: Lessons learned. *International Journal of Artificial Intelligence in Education*, 15(3), 147-204.
- Veale, M., & Binns, R. (2017). Fairer machine learning in the real world: Mitigating discrimination without collecting sensitive data. *Big Data & Society*, 4(2), 1-17. <https://doi.org/10.1177/2053951717743530>
- Veugelers, J., & Portier, R. (2021). Data-Driven Healthcare: AI and the Future of Clinical Pathways. *Health Policy and Technology*, 10(3), 100568.
- Vuorikari, R., & Castaño-Muñoz, J. (2022). The ethics of artificial intelligence in education: Promoting equity and transparency. *European Journal of Education*, 57(2), 269-284.
- Wang, Y., & Xu, H. (2020). Adaptive learning systems and employee performance: An empirical study. *Education and Information Technologies*, 25(2), 1589-1607.
- Watson, D. S., Krutzinna, J., Bruce, I. N., Griffiths, C. E., McInnes, I. B., & Floridi, L. (2021). Clinical applications of machine learning algorithms: Beyond the black box. *BMJ*, 364, l886.
- Weller, M., Jordan, K., DeVries, I., & Rolfe, V. (2020). Mapping the Landscape of Artificial Intelligence in Higher Education. *International Journal of Educational Technology in Higher Education*, 17(1), 1-27.
- Weng, S. F., Reps, J., Kai, J., Garibaldi, J. M., & Qureshi, N. (2017). Can machine-learning improve cardiovascular risk prediction using routine clinical data? *PLOS ONE*, 12(4), e0174944. <https://doi.org/10.1371/journal.pone.0174944>
- Wenger, E. (1987). *Artificial Intelligence and Tutoring Systems: Computational and Cognitive Approaches to the Communication of Knowledge*. Morgan Kaufmann.
- West, S. M., Whittaker, M., & Crawford, K. (2019). Discriminating systems: Gender, race and power in AI. *AI Now Institute Report*.
- WHO. (2021). *Ethics and governance of artificial intelligence for health: WHO guidance*. World Health Organization.

- Williamson, B., & Eynon, R. (2020). Historical roots and emergent trends in education data science. *Learning, Media and Technology*, 45(3), 223-235.
- Winkler, R., & McCloy, R. (2020). Emotion detection in intelligent tutoring systems: A systematic review. *IEEE Transactions on Learning Technologies*, 13(4), 637-651.
- Woolf, B. P. (2010). *Building Intelligent Interactive Tutors: Student-Centered Strategies for Revolutionizing E-learning*. Morgan Kaufmann.
- Woolf, B. P. (2021). AI in Education: An Overview of Current Research and Future Directions. *International Journal of Artificial Intelligence in Education*, 31(2), 101-123.
- Woolf, B. P., Burleson, W., Arroyo, I., Dragon, T., Cooper, D. G., & Picard, R. W. (2021). Affect-aware tutors: Recognising and responding to student affect. *International Journal of Artificial Intelligence in Education*, 31(3), 582-609.
- Woolf, B. P., Lane, H. C., Chaudhri, V. K., & Kolodner, J. L. (2019). AI grand challenges for education. *AI Magazine*, 40(1), 65-74.
- Zawacki-Richter, O., Marín, V. I., Bond, M., & Gouverneur, F. (2019). Systematic review of research on artificial intelligence applications in higher education – where are the educators? *International Journal of Educational Technology in Higher Education*, 16(1), 39.
- Zawacki-Richter, O., Marín, V. I., Bond, M., & Gouverneur, F. (2019). Systematic review of research on artificial intelligence applications in higher education. *International Journal of Educational Technology in Higher Education*, 16(1), 1-27.
- Zhai, X., Lin, L., & Xu, Y. (2022). Learner Engagement and AI-Supported Personalization: A Study of Khan Academy's Adaptive Platform. *Computers & Education*, 190, 104592.
- Zhang, T., Liu, Y., & Chang, C. (2023). Augmented reality-based eye tracking for intelligent learning and surgical training. *Journal of Educational Technology & Society*, 26(2), 17-30.
- Zhang, X., Wang, F., & Hu, J. (2022). Clinical decision support systems based on machine learning: A review. *IEEE Reviews in Biomedical Engineering*, 15, 120-136.
- Zhang, Y., & Lu, X. (2020). Personalized learning in AI-based educational systems: Evidence from Squirrel AI. *International Journal of Artificial Intelligence in Education*, 30(1), 1-22. <https://doi.org/10.1007/s40593-019-00185-z>

- Zhang, Z., Wang, R., & Li, Q. (2021). Enhancing online learning with AI-driven facial recognition technologies. *Journal of Learning Analytics*, 8(4), 78-91.
- Zhou, L., Pan, S., Wang, J., & Vasilakos, A. V. (2023). Explainable AI: A review of trends and opportunities in education and healthcare. *IEEE Transactions on Artificial Intelligence*, 4(2), 161-177.
- Zhou, L., Wang, Y., & Yang, Z. (2019). Affective computing in clinical and educational settings: Challenges and future directions. *Sensors*, 19(14), 3140.
- Zhou, L., Zhang, D., & Wang, H. (2020). Emotion recognition in intelligent tutoring systems: A review of features, methods, and applications. *IEEE Transactions on Affective Computing*, 11(1), 3-20.
- Zhou, M., Mulvihill, C., & Ordóñez, V. (2023). Data breaches in edtech: Regulatory responses and institutional liabilities. *Educational Technology Research and Development*, 71(2), 399-418.
- Zhou, M., Wang, X., & Zhang, J. (2021). Adaptive learning in China: A case study of Squirrel AI's intelligent education system. *British Journal of Educational Technology*, 52(3), 987-1005.
- Zhou, X., Yu, S., & Cheng, G. (2021). Multi-modal learning analytics: A systematic review. *IEEE Transactions on Learning Technologies*, 14(1), 16-28.
- Zhou, Y., & Li, M. (2019). AI in professional education: Opportunities and challenges in workplace learning. *Computers in Human Behavior*, 99, 307-315.
- Zhou, Y., Xu, X., Wang, L., & Yang, S. (2020). The role of artificial intelligence in rehabilitation medicine. *Frontiers in Neurorobotics*, 14, 43.
- Zou, B., Lin, Y., & Deng, L. (2023). Teacher readiness for AI-powered education: A case study in adaptive systems. *Educational Technology Research and Development*, 71(3), 551-576.

Dr. V. N. Rajavarman, a distinguished professor at Dr. M.G.R. Educational and Research University, Chennai, earned his doctorate from the same institution. Since beginning as a Lecturer in 1992, he has accumulated 28 years in academia and four in industry, advancing to Professor in Computer Science. He has authored over 75 internationally indexed journal articles and published 5 books and one patent. As a doctoral guide, he has supervised 16 PhDs and is mentoring 8 more. Honored with numerous awards, he currently serves as Professor, Dean of Part-time Studies, and Additional Dean of Computer Studies at Dr. M.G.R. University.

Dr. V. Saishanmuga Raja, Professor at Dr. M.G.R. Educational & Research Institute University, Chennai, holds a PhD in Computer Science and Engineering from the same institution (2015). He earned his B.E. (2006) and M.E. (2008) in Computer Science and Engineering from Anna University, Chennai. With 17 years of teaching and 10 years of research experience, his expertise spans Data Mining, Neural Networks, Genetic Algorithms, and IoT. He has published around 10 journal papers in reputed platforms and is an active member of professional bodies including IEANG, CSI, and ACM. His career reflects a strong blend of academic excellence and research innovation.

Mr. Suresh R., Assistant Professor in the Department of Computer Applications at DRBCC Hindu College, Chennai, has over 19 years of teaching experience. He holds an M.Sc., M.Phil., and B.Ed. in Computer Science and is pursuing a Ph.D. at Dr. M.G.R. Educational and Research Institute, Chennai. His academic and research interests include digital forensics, cybersecurity, cybercrime, networking, and software engineering. Proficient in C, C++, Java, and Python, he has earned several accolades, including the Man of Excellence Award, Best Assistant Professor Award, and four Best Faculty Awards, recognizing his dedication, teaching excellence, and contributions to research in computer science.

Dr. Senthilvelan G, Assistant Professor in Computer Science and Engineering at Dr. M.G.R. Educational and Research Institute, Chennai, has 15 years of academic experience. He earned his Master's in Computer Science and Engineering from the same institution and his Ph.D. from St. Peter's University, Chennai. His research work includes publications in Scopus-indexed journals and one published book. Actively contributing to academic development, he has organized numerous seminars, workshops, and conferences. His innovative approach is reflected in the acquisition of an Indian patent in Computer Science and Engineering, underscoring his commitment to advancing research, technology, and education in his field.

ISBN: 978-93-92090-42-4

DOI: www.doi.org/978-93-92090-42-4

Magestictcs Technology Solutions (P) Ltd

www.magestictcs.com

ISBN 978-93-92090-42-4

9 789392 090424 >